PaREGEn

Particle Reduced, Efficient Gasoline Engines

EUROPEAN COMMISSION Horizon 2020 | GV-2-2016 | Technologies for low emission light duty powertrains GA # 723954

Deliverable No.	D4.1	
Deliverable Title	Concept Specification Report	
Deliverable Date	2017-07-27	
Deliverable Type	REPORT	
Dissemination level	Confidential – member only (CO)	
Written By	Phil Roberts (Jaguar Land Rover) Brian Cooper (Jaguar Land Rover) David Sellick (Jaguar Land Rover)	2017-06-12
Checked by	Phil Roberts (Jaguar Land Rover) Andrew Lane & Richard Osbourne (Ricardo) Helge Dagefoerde (Bosch) Simon Edwards (Ricardo) - Coordinator	2017-07-17
Approved by	Simon Edwards (Ricardo) - Coordinator	2017-07-27
Status	Final Report	2017-07-27

Executive Summary

The Particle Reduced Efficient Gasoline Engine (PaREGEn) project is a European Horizon 2020 project that has been created with a view to demonstrating a new generation of Gasoline Direct Injection (GDI) engines achieving a reduction in CO₂ emissions of 15% compared to the best equivalent engines in the market in 2016 and control of particle size down to 10nm in size through the adoption of new technologies. Jaguar Land Rover, in conjunction with Bosch, Johnson Matthey, Ricardo and Honeywell are to deliver a Jaguar XE vehicle in 2019 that will adopt dilute combustion (excess air, external Exhaust Gas Recirculation (EGR), internal exhaust residuals or a combination of all three) with a view to realising the fuel consumption saving equivalent to the CO₂ reduction mentioned in the paragraph above as well as ensuring the vehicle and engine they are applied to is compliant with EU6c emissions regulations with particulate control down to 10nm.

Through a number of Computer Aided Engineering (CAE) and engine test investigations, a new combustion system (of increased compression ratio and higher activity) and new boosting system (Variable Nozzle Turbine (VNT) and electrical compressor) have been selected. Furthermore, a higher energy ignition system and optimised fuel injectors suitable for lean combustion (and reduced particulate formation) have been outlined for use (both supplied by Bosch).

A parallel investigation undertaken in WP2 will result in the finalised specification of an aftertreatment system that is suitable for lean gasoline combustion. To support this, a lean aftertreatment study was undertaken in WP4 with a view to outlining the aftertreatment layout most suitable. By using an in-house simulation tool, an aftertreatment system consisting of a Three Way Lean NOx Trap (TWLNT), Gasoline Particulate Filter (GPF) and Selective Catalytic Reduction (SCR) utilising urea injection has been outlined. After combining the efficiency gains of each of the new technologies investigated within the concept study phase of WP4, a target Brake Specific Fuel Consumption (BSFC) and engine out NOx map have been created.

Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:			
#	Partner	Partner Full Name	
1	RIC	RICARDO UK LIMITED	
2	DAI	DAIMLER AG	
3	JLR	JAGUAR LAND ROVER LIMITED	
4	BOSCH	ROBERT BOSCH GMBH	
5	FEV	FEV EUROPE GMBH	
6	JM	JOHNSON MATTHEY PLC	
7	HON	HONEYWELL, SPOL. S.R.O.	
8	JRC	JOINT RESEARCH CENTRE – EUROPEAN COMMISSION	
9	UNR	UNIRESEARCH BV	
10	IDIADA	IDIADA AUTOMOTIVE TECHNOLOGY SA	
11	SIEMENS	SIEMENS INDUSTRY SOFTWARE SAS	
12	LOGE	LUND COMBUSTION ENGINEERING LOGE AB	
13	ETH	EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH	
14	UDE	UNIVERSITAET DUISBURG-ESSEN	
15	RWTH	RWTH AACHEN UNIVERSITY	
16	UFI	UFI FILTERS SPA	
17	UOB	UNIVERSITY OF BRIGHTON	
18	GARR	GARRETT-ADVANCING MOTION	

Project partners:

This project has received funding from the European Union's Horizon2020 research and innovation programme under Grant Agreement no. 723954.